

A New Manufacturing Process for Fabricating 3-D Interconnects for MEMS and ICs

- > Why Stacking 3-D Interconnects
- Challenges in Conventional 3-D Interconnect Manufacturing
- > A New Way of Manufacturing Micro/Nano Scale Interconnects
- Flex Introduction
 - Industries and Products
 - Innovation at Flex
 - Boston Innovation Center

Why 3-D Stacking of Interconnects

> Miniaturization

Heterogeneous Integration

International Technology Roadmap for Semiconductors, 2007 Edition, Interconnect, pp. 5.

> Enhanced Performance

Source: Intel

> Functionality

Significant power consumption

3-D Interconnects for IC and MEMS

(8-10µm)

Global interconnects (1-2µm)

Schematic Crosssections of TSV First and Middle/Last

Wafer packaging level interconnects

International Technology Roadmap for Semiconductors, 2007

Conventional 3-D Interconnect Fabrication Methods

What is the Need for Next Generation 3-D Interconnects?

There is a need for an alternative interconnect fabrication processes to address the challenges of fabricating 3-D interconnect for MEMS and IC.

- Scalable to nano and micro dimensions
- **Fast**
- > Applicable to wide range of materials
- Cost-effective

Developed Method of Fabricating 3-D Interconnects

> Fast > Scalable Room-temperature and pressure Chemical- free Cost-effective > Environmentally friendly > No need a seed layer > Material independent > Hybrid nanostructures

Forces Acting on the Particles under the applied AC Electric Field

Dielectrophoretic Froce:

 $\sigma_2 + 2\sigma_1$

 $F_{DFP} = 2\pi\epsilon_1 Re|\underline{K}(\omega)|r^3 \nabla E^2$

$$\operatorname{Re} | K | = \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + 2\varepsilon_1} + \frac{3(\varepsilon_1 \sigma_2 - \varepsilon_2 \sigma_1)}{\tau_{MW} (\sigma_2 + 2\sigma_1)^2 (1 + \omega^2 {\tau_{MW}}^2)}$$
$$\tau_{MW} = \frac{\varepsilon_2 + 2\varepsilon_1}{\varepsilon_2 + 2\varepsilon_1}$$

r is the radius of the particle ε_1 dielectric permittivity of particle ε_2 dielectric permittivity of medium

 $Re|K\omega|$ is Clausius–Mossotti Maxwell-Wagner charge relaxation time

positive dielectrophoresis

Neutral body Positive DEP

> Dielectrophoresis and Optoelectronic Tweezers for Nanomanipulation, Stanford University, Jong Min Sung, December 10, 2007.

 $\epsilon_1 > \epsilon_2$

Governing Parameters

- voltage
- Frequency
- > particle size
- > particle type
- > particle concentration
- > pattern dimensions
- > assembly time
- Solution pH and ionic strength

Fabrication of Interconnects with Controlled dimensions

Fabrication over a large area. Uniformity is 90.3% over millimeters area.
 Controlled, repeatable and reliable fabrication.

Cihan Yilmaz et al., **ACS Nano**, 2014, 8 (5), pp 4547–4558 **imeters area.**

Fabrication of Interconnects in Very High Aspect Ratio Vias

- Interconnects can be fabricated in very high aspect ratio vias (e.g. 50nm diameter, 10) mm length).
- Promising for the fabrication of global/wafer packaging level interconnects.

Material properties

> TEM shows that NPs completely fuse without any voids or gaps. > Nanopillars have polycrystalline nature.

Electrical Properties

 \succ Similar or better resistivity values were observed (~ 10-7 Ω ·m) from the nanopillars fabricated by nanoparticles and conventional electroplating.

> The obtained resistivity was only 1 order of magnitude higher (1.96×10⁻⁷ Ω ·m) from bulk gold resistivity.

Tungsten resistivity is similar to CVD tungsten.

Capability of fabricating various materials

Acknowledgement

This work has been performed at Northeastern University.

Global Scale & Reach

\$26 billion company

52 million sq. ft. of manufacturing and services space

>1,000
global
customers

200,000+ employees

30 Countries

1.2 million active components

100+ locations

14,000 active global suppliers

2,500 design engineers

Global Design & Innovation Presence

9 Product Introduction Centers

25+ Design Centers

2500 Design Engineers

Wuzhong, China Shanghai, China

🔵 Taipei, Taiwan

Cebu, Philippines

Kallang, Singapore

Insight across industries

Flex Sustainable Innovation

Access to new & tested technology building blocks

Development partner ecosystem

Improved product reliability

Early stage engagement Entry into new & adjacent markets

Accelerate time to market

Experienced design & engineering teams

Flex Smart Products

fitbit

VIVALNK

Everything you need to know

Smart Technology Building Blocks

Biosensors

Flexible battery & PCB

Printed electronics

Wireless interface

Soft encapsulation

Biocompatible substrates

Durable/Disposable attachments

Displays & GUI

Flex Boston Innovation Center

Overview

A concepting, design & short run production facility to support the region innovation economy from large multinational customers to startups.

Focus areas include

Health, Robotics, Textile & Apparel, Energy, Mobility

Equipment includes

3D printers & modeling, CNC machining (metal, plastic, foam) High precision injection molding Laser metal cutter Textile Engineering

Space

17,000 sq ft to support product & system design, prototyping, assembly and testing

Flex Boston Innovation Center

CONCEPTING

Exploratory and collaborative development of early stage product concepts for new market applications

DESIGN AND ENGINEERING

Collaborative ecosystem approach to reduce time to market for customers, technology partners, and universities

PROTOTYPING

17,000 square feet of engineering/prototyping space to support product and system design, prototyping, assembly, and testing

MANUFACTURING

Assembly line and shipping station for your first product sample to your first hundred test units

Thank You

Confidential

Comparison with other interconnect fabrication methods

Interconnect fabrication method	Material independent	Room temperature	Atmospheric pressure	Seed layer requiremen
Electroplating	No	Yes/No	Yes	Yes
Thin film deposition	No	No	No	Yes/No
Directed nanoparticle assembly	Yes	Yes	Yes	No

Fusion Mechanism

Particle size	5nm	20nm	50nm
Resistivity at contact (ohm·m)	1.50E-04	6.00E-06	1.40E-07
Contact diameter (nm)	7.20E-09	1.70E-08	2.70E-08
Contact length (nm)	4.00E-10	4.00E-10	4.00E-10
Current (A)	1.62E-03	3.50E-03	3.50E-03
Resistance (ohm)	1.47E+03	1.19E+01	9.79E-02
Joule heating (W)	9.67E-15	6.58E-16	5.27E-16
Temperature increase (C)	5.93E+02	6.31E+01	3.23E+00
Result	fused	partially fused	not fused

- F_a : van der Walls force
- z_0 : the separation distance between the particle (0.4nm)
- a : the contact radius
- R_c: the contact resistance
- $I_{\rm p}$: the magnitude of the applied current

- particles.
- > Small size particles (<10nm) have much lower melting temperature compared to their bulk melting points.
- particles.

> The localized Joule heating due to the applied current fuses the 5nm

> The amount of current was not enough to completely fuse 20 and 50nm

